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1. Introduction

P-term inflation is a type of hybrid inflation [1] that appears as the effective theory of

some brane inflation models, in particular the D3/D7 version [2, 3] of the KKLMMT

scenario [4, 5]. In the framework of N=2 supersymmetric gauge theory a P-term model was

introduced in [6], with a global SU(2,2|2) superconformal gauge theory that corresponds

to a dual gauge theory of supersymmetric D3/D7 branes [7]. Superconformal SU(2,2|2)
symmetry can be broken down to N=2 supersymmetry by the vev of the auxiliary triplet

field Pi of the vector multiplet. The P-term model in N=2 supersymmetry contains a triplet

of FI terms ξi which arise from a magnetic flux triplet in the D3/D7 brane construction.

Truncating one of the supersymmetries leaves an N=1 model, which describes both F- and

D-term potentials and also potentials which are a mix of the two.

The status of the FI terms becomes more complicated when the supersymmetry is

made local. In [8, 9] a supergravity was constructed with a locally supersymmetric ex-

tension of the FI term of the Abelian vector multiplet. Local SUSY with an FI term

requires axial gauging of the gravitino and the gaugino, known as local R-symmetry. It

has long been known [10] that a U(1) gauge theory with an FI term can be coupled to

supergravity in a way that preserves the gauge invariance only if the superpotential of the

theory is invariant under the R symmetry and charged under the U(1) symmetry. The be-

haviour of N=1 supergravity with FI terms and an R-symmetry was studied in [11] using
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the superconformal approach to supergravity [12]. In the superconformal picture gauge

symmetries commute with local superconformal symmetries, which is shown to imply that

in supergravity a superpotential cannot be gauge invariant. This has consequences for the

construction of P-term potentials in supergravity as the charges of the scalar fields differ

in supergravity from their supersymmetric values, as will be discussed in section 2. A

straightforward generalisation of the supersymmetric formalism is not possible; to study

P-term inflation it is necessary to construct a P-term potential in supergravity.

In a supersymmetric P-term model we start with two supersymmetries and an SO(3)

choice of direction for the FI vector. One of the symmetries is then broken to leave an N=1

SUSY theory with a P-term potential. We wish to repeat this procedure in supergravity;

to construct a P-term model in the N=2 theory and break one of the symmetries to leave

an N=1 P-term theory. However until recently it was not known how to obtain FI terms

in N=2 supergravity, embedding the P-term model into supergravity was not thought to

be possible. In [13] a model was constructed which had FI constants in the D-term of an

N=2 theory. Section 3 describes a generalisation of this construction in which FI terms are

also produced in the superpotential giving rise to a P-term supergravity potential.

The paper is organised as follows. Section 2 reviews the supersymmetric version of

the P-term model in flat and curved spacetime. A heuristic approach to the coupling to

gravity is taken [7] whereby one of the supersymmetries is made local and the resulting

theory is treated as N=1 supergravity. The problem of how to embed P-term inflation into

supergravity is addressed in section 3. Section 3.1 reviews the way an N=2 supergravity

theory is truncated to an N=1 theory and the conditions this imposes on the content

of the theory. Section 3.2 gives the details of the geometry we use to construct a P-

term potential. We show how a particular choice of Killing vector for the quaternionic

geometry can give rise to FI terms, however in section 3.2.1 we show that gauging only

one isometry means that D-terms or F-terms are allowed in the reduced potential, but

not both. Sections 3.2.2 and 3.2.3 show how more complicated gaugings can give rise to

FI terms in the superpotential and D-term of the theory and we construct the resultant

P-term potential. For each gauging we consider the vacuum structure of the reduced scalar

potential and discuss its usefulness for cosmology. We conclude in section 4.

2. P-term models in supersymmetry and rigid supergravity

We begin with a review of the P-term potential in supersymmetry. Take an N=2 super-

symmetric theory which contains one hypermultiplet and one vector multiplet and arrange

the two charged scalar fields into a multiplet of charge +1

h =

(

φ+

φ∗
−

)

(2.1)

so that the P-term potential for bosonic scalars can be written

V =
g2

8

3
∑

i=1

(h†σih − ξi)
2 +

g2

2
|φ0|2h†h (2.2)
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This potential was constructed in [7]. φ0 is the scalar in the uncharged chiral multiplet, g

is a gauge coupling constant, σi are the Pauli matrices and ξi is a constant Fayet-Iliopoulos

3-vector. If ξ1 = ξ2 = 0 this potential is the super-Bogomol’nyi limit1 of a D-term potential;

if ξ2 = ξ3 = 0 this is the Bogomol’nyi limit of an F-term potential. We split the three vector

ξi into the product of a rotational part described by a SO(3) matrix R and a magnitudinal

part (0, 0, ξ)

ξi = (R−1)ijδj3ξ (2.3)

If Rij = δij then (2.2) is a D-term potential, so all P-term potentials are described by

rotations from the D-term case. The class of P-term potentials is parameterised by two

Euler angles, ψ, θ, and ξ, the magnitude of the FI vector. Our conventions for Euler angles

are given in appendix A.

The scalar potential is constructed from the superpotential and D-term as V = |∂W |2+
g2

2 D2 with

W =
gφ0

2
√

2
(P1 − iP2) (2.4)

D =
1

2
P3 (2.5)

where

Pi = h†σih − (R−1)i3ξ (2.6)

So a P-term potential contains constant FI terms in the superpotential and the D-term.

To look at inflation in a P-term theory we need to include the gravitational sector.

One way to proceed [7] is to couple the N=2 supersymmetric theory to N=1 supergravity

by choosing a supersymmetry, making it local, and treating it as if it were the only one. As

discussed in the introduction if a U(1) gauge theory with an FI term is to be consistently

coupled to supergravity in a way that preserves gauge invariance the superpotential must

be invariant under the R-symmetry but transform under the U(1) symmetry. This alters

the charges of the fields appearing in the superpotential. In supersymmetry the scalar

fields φ±, φ0 have charges Q± = ±1, Q0 = 0, and the superpotential is uncharged. As an

example of how this changes in supergravity take W ∝ φ0φ+φ− and an FI constant in the

D-term. Then the fields have charges

qi = Qi − ρi
ξ

M2
P

,
∑

ρi = 1 (2.7)

As MP → ∞ we regain qi = Qi, indeed with a generic choice of superpotential the charges

always return to their supersymmetric values in this limit. MP → ∞ is known as the rigid

limit of supergravity [11] and describes supersymmetry in a curved space-time. Unless

the rigid limit is being considered it no longer makes sense to combine φ+, φ∗
− into the

multiplet (2.1), so except in this limit it is unclear how to proceed with this formalism in

supergravity.

1as defined in [14]
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2.1 Cosmology

To find the form of the scalar potential in rigid supergravity take the minimal Kähler

potential

K =
|φ+|2 + |φ−|2 + |φ0|2

M2
P

(2.8)

minimal vector kinetic terms, and the superpotential (2.4), and D-term (2.5). Note that

the MP → ∞ limit should not be taken at this stage but at the end of the calculation.

Compute the scalar potential in the usual way

V = eK

{

∣

∣

∣

∣

∂W

∂φi
+

φ∗
i W

M2
P

∣

∣

∣

∣

2

− 3

∣

∣

∣

∣

W

MP

∣

∣

∣

∣

2
}

+
g2

2
D2 (2.9)

=
g2

2

{

|φ+φ−|2 + |φ0φ−|2 + |φ0φ+|2

− sin θ sin ψξ(φ+φ− + φ̄+φ̄−) + (sin θ sinψξ)2
}

+ O
( |φi|2

M2
P

)

+
g2

8

(

|φ+|2 − |φ−|2 − cos θξ
)2

(2.10)

The term in braces in (2.9) is the F-term part of the potential, the second term is the D-

term. The full expression for the potential to all orders in |φi|/MP is given in appendix B.

This potential has two types of extrema:

Inflationary valley. φ+ = φ− = 0 is a stationary point of the potential in the φ±

directions. The extremum is a minimum if

2|φ0|2 > ξ (2.11)

and a maximum otherwise. Inflation occurs when the fields are rolling in this valley and

ends when the critical point is reached.

The effective potential during inflation, when φ+ = φ− = 0, is

V =
ξ2g2

2

{

1 + sin2 θ

[

1

2

|φ0|4
M4

p

+ O
( |φ0|5

M5
P

)]}

(2.12)

P-term inflationary potentials are parameterised by 0 ≤ sin2 θ ≤ 1. The two limiting cases

are sin θ = 0 which gives the D-term potential and sin2 θ = 1 which gives the F-term

potential. In the rigid limit the inflationary potential is flat for all P-term potentials. In

the D-term case all corrections to the flat potential vanish which suggests that the D-term

inflationary potential remains flat in supergravity unlike all other P-term potentials.

Supersymmetric minimum. The supersymmetric minimum is the point at which

∂W

∂φi
+

φ∗
i W

M2
P

= 0 (2.13)

D = 0 (2.14)
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This occurs at

φ0 = 0,

|φ+|2 − |φ−|2 = ξ cos θ,

eiψ cos

(

θ

2

)

φ− = i sin

(

θ

2

)

φ̄+ (2.15)

where the vacuum manifold is a circle. After the phase transition at the end of inflation the

charged fields waterfall into the supersymmetric minimum. Cosmic strings may be formed

by the Kibble mechanism [15].

This is the vacuum structure required for hybrid inflation. All of the P-term models

described here give rise to hybrid inflation and allow cosmic string formation at the end of

inflation.

3. P-term models in supergravity

The analysis of section 2, which describes supersymmetry in a curved space-time gives an

indication of the behaviour of a P-term model in supergravity. However for a complete

analysis we need to construct a P-term potential in supergravity. This means finding an

N=2 supergravity which can be truncated to N=1 in such a way as to give FI terms in

the superpotential and D-term of the theory. As in the supersymmetric version of the

theory we start with an N=2 supergravity theory containing a constant FI term in each

of the three components of the moment map and an arbitrary choice of direction. We

then truncate one of the supersymmetries to get an N=1 supergravity theory containing

FI terms. For notational convenience from now on we will use units in which MP = 1.

Consider an N=2 supergravity theory [16] with nH hyper-multiplets, nV vector multi-

plets, and nC chiral multiplets. The hyper-multiplet sector describes a quaternionic-Kähler

manifold which has SU(2) connection ωx, and complex structures Jx
uv, where x = 1, 2, 3

and u = 1, . . . , 4nH . The vector multiplet sector describes a special-Kähler Manifold with

a 2(nV + 1) component symplectic section

V =

(

LΛ

MΛ

)

= e
K

2

(

XΛ

FΛ

)

(3.1)

Λ = 0, 1, . . . , nV . K is the Kähler potential

e−K(z,z̄) = −iXΛF̄Λ + iFΛX̄Λ (3.2)

where zi are the coordinates on the manifold. The symplectic section may be written in

terms of a prepotential F (XΛ) so that FΛ = ∂F/∂XΛ.

Historically the problem with lifting P-term inflation to supergravity was that it was

not known how to get constant FI terms in N=2 supergravity. In N=2 supergravity the

moment map which corresponds to the Killing vector kΛ is given by

4nHP x
Λ = −Jxuv∂ukvΛ (3.3)

– 5 –



J
H
E
P
0
6
(
2
0
0
7
)
0
8
6

Constant terms in the moment maps of the N=2 theory give rise to FI terms. Except in

a few extremal cases (for example nH = 0, or the rigid limit when the SU(2) curvature

vanishes) it was not known how to add an arbitrary constant to PΛ and still satisfy (3.3).

Recently in [13] a moment map was constructed in N=2 supergravity which gave a D-term

potential containing a constant FI term. This was done by considering the truncation to

an N=1 theory. (In [17] this was extended to admit an axion-dilaton field). The moment

maps were written as [18]

P x
Λ =

1

2
rx
Λ + ιΛωx (3.4)

where rx
Λ

is the SU(2) compensator. A Killing vector only preserves ωx and Jx up to an

SU(2) transformation, and the compensator is defined so that the following equations are

satisfied

LΛωx =
−1

2
∇rx

Λ (3.5)

LΛJx = ǫxyzry
Λ

Jz (3.6)

where LΛ denotes the Lie derivative with respect to kΛ. In some manifolds it is possible to

choose a Killing vector so that the compensator is constant, resulting in a constant term

in the moment map. In section 3.2 we show how a particular choice of Killing vectors can

lead to constant terms in the superpotential and the D-term of the reduced theory and

thus to a P-term potential.

3.1 Reduction from N = 2 to N = 1 supergravity

The relationship between different P-term models is a result of the symmetries of the N=2

theory so we begin our construction of a supergravity P-term model in N=2 supergravity.

The only known way to get FI terms in N=2 supergravity is by truncating the theory to

one which resembles an N=1 supergravity containing FI terms [13] where we can construct

a useful model of inflation. This parallels the discussion of P-term inflation in [7] where

the P-term model was constructed by taking an N=2 supersymmetry and then making one

of the symmetries local and disregarding the other to move to N=1 supergravity.

The constraints imposed by the truncation from N=2 to N=1 supergravity are

known [19, 20] and we review them here. The truncation is done by constraining the

theory so that the N=2 supergravity transformations look like those of an N=1 theory.

Additional conditions come from ensuring that the reduced theory is consistent. A full

derivation of the truncation conditions is not necessary for this work; we state here the

conditions which constrain the moment maps or the Killing vectors of the N=2 theory.

This will allow us to compute the reduced scalar potential.

The reduction truncates the spin 3/2 multiplet as the second gravitino, ψ2µ, and the

graviphoton are not present in N=1 supergravity. The N=2 gravitino transformations are

δψAµ = ∇̂µǫA + (igSABηµν + ǫABT−
µν)γνǫB (3.7)

where

∇̂µǫA = DµǫA + ω̂B
µ|AǫB + Q̂µǫA (3.8)

– 6 –
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The SU(2) gauge connection is

ω̂B
A = ωB

A + g(Λ)A
ΛP x

Λ(σx)BA (3.9)

and the U(1) gauge connection is

Q̂ = Q + g(Λ)A
ΛP 0

Λ (3.10)

where ωB
A and Q are the connections of the ungauged theory. P 0

Λ
is the holomorphic

momentum map, the index 0 is to distinguish it from the triholomorphic momentum map

P x
Λ

. SAB describes the shift of the gravitino

SAB ≡ i

2
P x

Λσx
ABLΛ (3.11)

The ‘dressed’ graviphoton is

T−
µν ≡ 2iImNΛΣLΣFΛ−

µν (3.12)

where NΛΣ is the N=2 vector kinetic matrix which can be computed from the prepotential

F (XΛ) as

NΛΣ = F̄ΛΣ +
iNΛ∆NΣΓX∆XΓ

NΘΥXΘXΥ
(3.13)

with FΛΣ = ∂2F (X∆)/∂XΛ∂XΣ and NΛΣ = 2ImFΛΣ.

For the truncation to an N=1 theory to be consistent the transformation of the second

gravitino, δψ2µ, must be set to zero. In the ungauged case this means

T−
µν = 0 (3.14)

The most general way to find solutions to (3.14) is to view it as an orthogonality relation

between the vector and scalar sectors. To satisfy this relation we split the index Λ = {Λ,X}
so that Λ = 1, . . . , n′

V = nV − nC and runs over the retained vectors of the reduced theory

and X = 0, . . . , nC and runs over the retained scalars. To satisfy (3.14) set FX
µν = 0 and

ImNΛΣLΣ = 0 which requires

LΛ = 0 (3.15)

In a gauged theory the vanishing of the second gravitino gives the additional constraints

S21 = 0 and ω̂2
1 = 0. These are satisfied if

P 1
Λ = P 2

Λ = 0 (3.16)

In an N=1 theory the gravitino transformation is

δψµ = Dµǫ + Q̂µǫ + iL(z, z̄)γµǫ (3.17)

where

L(z, z̄) = W (z)e
1

2
K(z,z̄) (3.18)

– 7 –



J
H
E
P
0
6
(
2
0
0
7
)
0
8
6

comparing this with the reduction of (3.7) shows that

L(z, z̄) =
i

2
g(Λ)L

Λ(P 1
Λ − iP 2

Λ)

=
i

2
g(X)L

X(P 1
X − iP 2

X) (3.19)

by (3.15).

The reduction of the transformations in the hypermultiplet and vector multiplet sectors

should be considered separately. For the truncated theory to have the correct form for N=1

supergravity the quaternionic manifold of the hyper-multiplet sector must be reduced to

a Kähler-Hodge one and the special-Kähler manifold of the vector sector reduced to a

smaller Kähler manifold. Reducing the vector multiplet sector requires the truncation of

the gaugino transformations. The N=1 gaugino transformation is

δλΛ = F−Λ
µν γµνǫ + iDΛǫ (3.20)

For this to be the reduction of the N=2 theory

DΛ ≡ (ImN−1)ΛΣ(P 0
Σ + P 3

Σ) (3.21)

where P 0
Σ is given by

P 0
Σ = 2iImNΣΛfΛ

XY L̄XLY (3.22)

and gives the special-Kähler manifold contribution to the D-term. fΛ

∆Σ
are the structure

constants of the N=2 gauge group. P 0
Λ

vanishes for an Abelian gauging. For the truncation

of the gaugino to be consistent we must ensure

P 3
X = 0, P 0

X = 0 (3.23)

The truncation also requires that the vector kinetic matrix, fΛΣ, of the reduced theory is

fΛΣ = 2N̄ΛΣ (3.24)

Truncation of the hypermultiplet sector requires the holonomy of the quaternionic man-

ifold to be reduced because in N=1 supergravity all the scalars must lie in chiral multiplets

with Kähler-Hodge (K-H) structure. This is equivalent to selecting an nH dimensional

complex submanifold on which the 2nH extra degrees of freedom are frozen. Let qu be

the coordinates on the quaternionic manifold, the reduction requires q4s+3 = q4s+4 = 0,

s = 0, . . . , nH − 1. Then ws = q1+4s + iq2+4s are the nH holomorphic coordinates on the

K-H manifold. We define nt as the real coordinates along directions orthogonal to the

reduced K-H manifold. This decomposition of indices allows us to write down the last set

of conditions needed for the truncation; by considering the gauge groups in the original and

truncated theories it can be shown that the Killing vectors of the quaternionic manifold

are required to satisfy

ks
X = 0, kt

Λ = 0 (3.25)

– 8 –



J
H
E
P
0
6
(
2
0
0
7
)
0
8
6

For clarity we will list here all the truncation conditions needed to construct the scalar

potential

LΛ = 0 (3.26)

P 1
Λ = P 2

Λ = 0 (3.27)

P 3
X = P 0

X = 0 (3.28)

ks
X = kt

Λ = 0 (3.29)

Note that the moment maps that generate the superpotential have a scalar index and the

moment maps that generate the D-term have a vector index.

To compute the P-term potential we start with the N=2 scalar potential

VN=2 = L̄ΛLΣ

(

gIJ̄ kI
ΛkJ̄

Σ
+ 4huvk

u
Λkv

Σ

)

+ P x
ΛP x

Σ

(−1

2
(ImN−1)ΛΣ − L̄ΛLΣ

)

−3P x
ΛP x

ΣL̄ΛLΣ (3.30)

where huv is the metric on the quaternionic manifold, and I = 1, . . . , nV is the world index.

After truncation this becomes

VN=1 = 4

(

−3LL̄ + gij̄∇iL∇j̄L̄ + gss̄∇sL∇s̄L̄ +
1

16
ImfΛΣDΛDΣ

)

(3.31)

which can be computed from (3.13), (3.19) and (3.21) if the moment maps and prepotentials

are known.

3.2 Building a P-term potential

We choose the simplest geometries for the vector and hypermultiplet sectors which contain

enough degrees of freedom to allow a scalar matter field and an inflaton after the trun-

cation. The matter field is found in the hypermultiplet sector where we use the standard

quaternionic geometry Sp(1,1)

Sp(1)Sp(1)
with metric

ds2 = dh2 + e−2h(db2
1 + db2

2 + db2
3) (3.32)

and connections

ωx =
−1

2
e−hdbx (3.33)

If nH = 1 the truncation of this is a Kähler-Hodge manifold which depends on only one

complex scalar field. This will be the matter field. The inflaton is found in the vector

sector of the N=2 theory. We take nV = 2 so that the special-Kähler manifold contains a

six component symplectic section. We choose the prepotential

F (X) =
−i

2
((X0)2 − (X1)2 − (X2)2) (3.34)

which gives the minimal special geometry

XΛ =







1

z1

z2






, FΛ =







−iX0

iX1

iX2






=







−i

iz1

iz2






(3.35)
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with nC = 1 so that X = 0, 1 and Λ = 2 a consistent truncation requires LΛ = 0 (3.26),

hence X2 = z2 = 0. This leaves the scalar field z1 to be the inflaton which from now on we

write as z. Note that smaller special-Kähler manifolds do not have enough scalar degrees

of freedom to give an inflaton after truncation. The Kähler potential (3.2) of this geometry

is

KV = − ln(2(1 − zz̄)) (3.36)

0 ≤ |z| < 1. The vector kinetic matrix (3.13) can be computed from the prepotential (3.34)

as

NΛΣ =
i

(z2 − 1)







1 + z2 −2z 0

−2z 1 + z2 0

0 0 1 − z2






(3.37)

The entry needed to compute the D-term of the reduced theory (3.21) is

N22 = −i (3.38)

Choosing nV = 2 gives us the freedom to gauge up to three isometries in the hypermul-

tiplet sector. The simplest case is to gauge just one, and this is the obvious supergravity

analogue of the U(1) gauging in the supersymmetric case. However in the next section it

will be shown that the simplest gauging does not allow P-term potentials. In the following

sections we consider theories containing one, two and three Killing vectors in turn, showing

whether or not P-term potentials are allowed and considering the vacuum structure of the

potential and it’s suitability for inflation. To find trajectories suitable for inflation we look

for directions along which the matter fields are minimised but z is unconstrained. We shall

call such a direction a valley for z.

3.2.1 Gauging one isometry

The simplest gauging is to include only one Killing vector. We start with a review of how

a D-term potential can be constructed. Choose the Killing vector [13]

kΛ = 4b3
∂

∂h
−2(ξb2−2b1b3)

∂

∂b1
+2(ξb1+2b2b3)

∂

∂b2
+2(b2

3−e2h+1−b2
1−b2

2)
∂

∂b3
(3.39)

The moment map corresponding to this Killing vector is

PΛ|N=2 =







−2e−hb1b3 − 2b2 + ξe−hb2

−2e−hb2b3 + 2b1 − ξe−hb1

−e−h(b2
3 + 1 − b2

1 − b2
2) − eh + ξ






(3.40)

The conditions for truncation (3.27) and (3.29) are satisfied on the Kähler-Hodge manifold

defined by b1 = b2 = 0. The moment map reduces to

PΛ|N=1 =







0

0

ξ − eh − e−h − e−hb2
3






(3.41)
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Using (3.38) the D-term (3.21) becomes

D =
2i(1 + ΦΦ̄)

Φ − Φ̄
− ξ (3.42)

where Φ = b3 + ieh. D contains a constant FI term.

As in the supersymmetric theory it is most straightforward to describe the P-term po-

tential in N=2 as a rotation from the D-term case. (3.39) can be generalised by performing

an inverse SO(3) rotation R−1
ij (θ, ψ, φ) on the bi fields.

kΛ = 4Rj3bj
∂

∂h
+

(

4Rj3(Ri1Rk1 + Ri2Rk2)bibj + 2
(

(Ri3bi)
2 − e2h + 1 (3.43)

−(Ri1bi)
2 − (Ri2bi)

2
)

Rk3 + 2ξ̃(Ri1Rk2 − Ri2Rk1)bi

) ∂

∂bk

with corresponding momentum map

PxΛ|N=2 = −2Rx3e
h − 2ǫxyzRz3by − e−h(2Ry3bybx − Rx3byby)

−e−h(1 − e2h)Rx3 − e−hξ̃(Ry1Rx2 − Ry2Rx1)by

+ξ̃ǫxyzRy1Rz2 (3.44)

Note that a generic rotation matrix Rij gives constant terms in all three components of

the moment map.

Truncation to an N=1 theory (3.27) means that either the first two components or the

last component of the moment map must vanish after the truncation. Which components

vanish depends on whether the index of the Killing vector lies in the retained vector or

retained scalar sector. As the gauge group is Abelian this means that either the D-term or

the superpotential vanishes. The two allowed cases are:

Vanishing superpotential. The truncation conditions P 1
Λ = P 2

Λ = 0, kt
Λ = 0 require

sin θ = 0 (3.45)

b1 = b2 = 0

which is the D-term case considered above with Killing vector (3.39) and reduced moment

map (3.41).

The scalar potential is

VD =
1

2

(

2i(1 + ΦΦ̄)

Φ − Φ̄
− ξ

)2

(3.46)

The potential is flat for z and so naturally gives rise to inflation. We would expect the

one loop corrections to this potential to lift the flat direction so that it is gently sloped.

This may also give rise to a natural end for inflation as in the hybrid inflationary scenario

discussed in section 2.1. The supersymmetric minimum of this potential is at

2i(1 + ΦΦ̄) = ξ(Φ − Φ̄) (3.47)

The topology of the vacuum is S1 and cosmic strings can form by the Kibble mechanism,

such strings were studied in [13] and were found to be BPS solutions.
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Vanishing D-term. The truncation conditions P 3
X = 0, ks

X = 0 can only be satisfied if

cos θ = 0 (3.48)

so after performing a rotation Rij(θ = π/2, ψ, φ) on the bi fields the Killing vector (3.43) is

kX = 4(sin ψb1 + cos ψb2)
∂

∂h

+
(

2 sin ψ(−e2h + 1 − b2
3 + b2

1 − b2
2) + 2 cos ψ(ξ̃b3 + 2b1b2)

) ∂

∂b1

+
(

2 cos ψ(−e2h + 1 − b2
3 − b2

1 + b2
2) + 2 sin ψ(2b1b2 − ξ̃b3)

) ∂

∂b2

+
(

4b3(sin ψb1 + cos ψb2) + 2ξ̃(−b1 cos ψ + b2 sin ψ)
) ∂

∂b3
(3.49)

The choice θ = π/2 can be made without loss of generality. Then the truncation conditions

are

b1 = b2 = 0 (3.50)

The truncated moment map is

PX|N=1 =







sin ψ

cos ψ

0






(e−h(b2

3 − 1) − eh + ξ̃) +







cos ψ

− sin ψ

0






b3(2 − e−hξ̃) (3.51)

To include z, the inflaton field, in the superpotential we choose the Killing vector (3.49) to

be k1, then with the Kähler potential (3.36) and setting Φ = b3 + ieh (3.19) becomes

L =
izeiψ1

√

2(1 − zz̄)

(

Φ2 − 1 − iξ̃Φ

Φ − Φ̄

)

(3.52)

which is composed of two parts; the total Kähler potential

K = KV + KQ

= − ln(2(1 − z̄z)) − 2 ln(−i(Φ − Φ̄)) (3.53)

and the superpotential

W = zeiψ1(Φ2 − 1 − iξ̃Φ) (3.54)

The reduced scalar potential, (3.31), is

VF =
2(1 − 3zz̄)

1 − zz̄

∣

∣

∣

∣

∣

Φ2 − 1 − iξ̃Φ

Φ − Φ̄

∣

∣

∣

∣

∣

2

+
zz̄

1 − zz̄

∣

∣

∣

∣

∣

2 − 2ΦΦ̄ + iξ̃(Φ + Φ̄)

Φ − Φ̄

∣

∣

∣

∣

∣

2

(3.55)

which is an F-term potential.

To see if this potential can give rise to inflation notice that the potential can be

extremized in the Φ directions by setting Φ = i (b3 = h = 0). This is a minimum if both

the following conditions hold:

zz̄(6 − ξ̃) > 2 − ξ̃ (3.56)

zz̄(3ξ̃ − 2) > ξ̃ − 2 (3.57)
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Along this trajectory the potential is

V (Φ = i) =
(ξ̃ − 2)2(1 − 3zz̄)

2(1 − zz̄)
(3.58)

If ξ̃ 6= 2 the fields are not always confined to this trajectory so for inflation to occur the

initial conditions must be chosen carefully. Even so the potential rapidly becomes steeply

sloped violating the slow roll conditions. If ξ̃ = 2, then Φ = i is a flat direction that

minimises the potential; inflation can occur as z rolls along this valley.

The supersymmetric minimum of the potential occurs at ∇zL = ∇ΦL = 0 which

requires

z = 0 (3.59)

Φ2 − 1 − iξ̃Φ = 0

So the supersymmetric vacuum is unique if ξ̃ = 2 and no topological defects form. If ξ̃ 6= 2

then there are two possible supersymmetric vacuua which may give rise to domain walls.

With a simple gauging it is possible to construct a triplet of moment maps contain-

ing constant terms in N=2 supergravity (3.44). However subsequent truncation to N=1

supergravity means that the potential is either an F-term potential (3.55) or a D-term po-

tential (3.46). Combinations of the two types which we would have expected in a P-term

model are no longer allowed.

3.2.2 Gauging two isometries

With a simple gauging the supergravity truncation conditions allow us to have either an F-

term potential or a D-term potential but not a combination of the two. However by gauging

more than one symmetry it is possible to get FI terms in the D-term and superpotential of

the theory. The simplest change we can make to the gauge group is to include two Killing

vectors instead of just one. We choose k1 to take the form (3.49) in order to generate an

F-term and k2 to take the form (3.39) in order to generate a D-term after truncation. We

relabel ξ̃ = ξ1 and ξ = ξ2 so that the origin of each FI term is clear. The Killing vectors

must satisfy

[k∆, kΣ] = fΓ

∆ΣkΓ (3.60)

where fΓ

∆Σ
are the structure constants of the gauge group. This requires

ξ1 = −ξ2 = ±2 (3.61)

f1
12 = f1

21 = f2
12 = f2

21 = 0 (3.62)

which gives an Abelian gauge group.

A consistent truncation can be achieved by setting b1 = b2 = 0 and L2 = 0 and reducing

the geometry to that considered in the previous section. Notice that after truncation only

k2 lies in the reduced Kähler-Hodge manifold, so the reduced N=1 theory has a U(1)
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gauging. The reduced potential is constructed from (3.38), (3.42) and (3.52)

V =
2(1 − 3zz̄)

1 − zz̄

∣

∣

∣

∣

Φ2 − 1 − iξ1Φ

Φ − Φ̄

∣

∣

∣

∣

2

+
zz̄

1 − zz̄

∣

∣

∣

∣

2 − 2ΦΦ̄ + iξ1(Φ + Φ̄)

Φ − Φ̄

∣

∣

∣

∣

2

+
1

2

(

2i(1 + ΦΦ̄)

Φ − Φ̄
− ξ2

)2

(3.63)

where the FI terms are constrained by (3.61).

To look for inflation in this potential notice that Φ = i is an extremum in the Φ

directions. Along this direction

V (Φ = i) =

{

8(1−3zz̄)
1−zz̄ if ξ1 = −2, ξ2 = 2

8 if ξ1 = 2, ξ2 = −2
(3.64)

If ξ1 = −2, ξ2 = 2 then Φ = i is only a minimum if zz̄ < 1/2 and the potential rapidly

becomes steeply sloped once the fields move away from the maximum at z = 0. It seems

unlikely that sufficient efolds of inflation could occur in such a potential. If ξ1 = 2, ξ2 = −2

then Φ = i is a global minimum and inflation would occur as z rolls along this flat direction.

A supersymmetric minimum requires ∇ΦL = ∇zL = D = 0 but because ξ1 and ξ2 are

not equal there is no solution to these equations. There is no supersymmetric minimum in

this system.

3.2.3 Gauging three isometries

The simple geometry we have chosen allows us to gauge up to three isometries. Including

three Killing vectors of the form we have been considering gives a P-term potential which

behaves differently to that of the previous section. We take one Killing vector k2 of the

form (3.39) to generate the D-term and two linearly independent vectors k0, k1 each of the

form (3.49) to generate the F-term. For k0, k1 to be linearly independent we must have

sin(ψ0 −ψ1) 6= 0, where ψi is the Euler angle appearing in the expression for ki (3.49). For

these Killing vectors to generate a group, we must impose

ξ0 = ξ1 = ξ2 = 2 (3.65)

and the structure constants are

f0
01 = f1

01 = f2
21 = f2

20 = 0 (3.66)

f1
20 = −f0

21 =
8

sin(ψ1 − ψ0)
(3.67)

f1
21 = −f0

20 =
8cos(ψ1 − ψ0)

sin(ψ1 − ψ0)
(3.68)

f2
01 = 8 sin(ψ1 − ψ0) (3.69)

and their permutations.

A consistent truncation requires b1 = b2 = 0 and L2 = 0. Notice that after the

truncation only k2 lies in the reduced Kähler-Hodge manifold, so the N=1 gauge group is
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U(1). However, as P 0
Σ no longer vanishes, the potential contains relics of the original N=2

non-Abelian gauge group. The moment maps are computed from k0, k1, k2 as before and

P 0
2 =

8i sin(ψ1 − ψ0)(z − z̄)

1 − zz̄
(3.70)

which gives

L =
i(eiψ0 + zeiψ1)
√

2(1 − zz̄)

(

Φ2 − 1 − 2iΦ

Φ − Φ̄

)

(3.71)

and

D =
2i(1 + ΦΦ̄)

Φ − Φ̄
− 2 +

8i sin(ψ1 − ψ0)(z − z̄)

1 − zz̄
(3.72)

The reduced scalar potential is

V =
8|1 + zei(ψ1−ψ0)|2

|1 − zz̄|

(

i(1 + ΦΦ̄) − (Φ − Φ̄)

Φ − Φ̄

)

(3.73)

+
1

2

(

2i(1 + ΦΦ̄)

Φ − Φ̄
− 2 +

8i sin(ψ1 − ψ0)(z − z̄)

1 − zz̄

)2

Φ = i extremizes the potential in the Φ directions and is a minimum if

zz̄ + i(2 sin(ψ1 − ψ0) + 1)(z − z̄) + 1 > 0 (3.74)

The potential along this direction is

V (Φ = i) =
32 sin2(ψ1 − ψ0)|z − z̄|2

(1 − zz̄)2
(3.75)

We can tune the slope of the potential so that inflation can occur in this valley. The fields

will eventually settle into the minimum at z = 0. The conditions for a supersymmetric

minimum ∇zL = 0, ∇ΦL = 0 and D = 0 are satisfied when

Φ = i, z = z̄ (3.76)

so the minimum reached at the end of inflation is supersymmetric.

4. Conclusion

The study of P-term scalar potentials in supergravity is interesting because the P-term

model is the effective theory of the D3/D7 brane inflation model, one of the most promising

models of string theory inflation. P-term models have been studied in supersymmetry

and in rigid supergravity but there were thought to be problems involved in lifting the

model to supergravity. Previously the P-term model has been studied in the rigid limit of

supergravity where all P-term potentials can inflate and with some tuning of the parameters

can produce sufficient efolds of inflation and density perturbations of the correct size to

agree with observations. Cosmic strings are formed at the end of inflation.

The major obstacle to constructing a P-term theory in supergravity was that it was

not known how to include FI terms in N=2 supergravity. We have shown that FI terms
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can be produced in both the superpotential and the D-term of the theory by considering

the truncation to an N=1 theory. If only one isometry is gauged this truncation restricts

the form of the N=1 scalar potential so that it contains either F-terms or D-terms but

not both. It is not possible to construct a P-term model with a simple gauging by this

method. If more than one isometry is gauged the potential can include F-terms and D-terms

both containing FI constants. Although the gauge group of the N=2 theory is now more

complicated the gauge group of the reduced N=1 theory is always the simple Abelian case

where only one isometry is gauged. Therefore we believe these models are the supergravity

analogues of the well known supersymmetry P-term potentials.

One of the nice properties of the supersymmetric theory was that by rotating the vector

of FI terms it was possible to move from a D-term potential to an F-term one, and the

magnitude of the FI vector was undetermined. This is no longer true in supergravity, where

after the truncation to an N=1 theory the position of the FI terms is fixed. If we gauge

more than one symmetry the size of the FI terms is also fixed. In each of the potentials

we have considered we have demonstrated a direction which could give rise to inflation.

It is a subject for further research whether these potentials give rise to sufficient efolds of

inflation, and whether they match cosmological observations. This is in progress. In these

classes of models cosmic strings are not formed at the end of inflation. This could alleviate

the parameter constraints on such models.
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A. Euler angles

We use the following parameterisations for an SO(3) rotation in terms of Cayley-Klein

parameters

R =







1
2 (a2 − b∗2 + a∗2 − b2) i

2 (b∗2 − a2 + a∗2 − b2) −ab − a∗b∗

i
2 (a2 + b∗2 − a∗2 − b2) 1

2 (b∗2 + a2 + a∗2 + b2) −i(ab − a∗b∗)

ba∗ + ab∗ i(ba∗ − ab∗) aa∗ − bb∗






(A.1)

which are defined in terms of Euler angles as

a = ei(ψ+φ)/2 cos
θ

2
(A.2)

b = iei(ψ−φ)/2 sin
θ

2
(A.3)

The SU(2) rotation associated with this SO(3) rotation is

U =

(

a b

−b∗ a∗

)

(A.4)
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B. The effective potential

The effective potential in Supergravity is given by (2.9), an explicit calculation of this with

the Kähler potential (2.8), superpotential (2.4) and D-term (2.5)

V =
g2

2
eK

{

|φ+φ−|2
(

1 +
|φ0|4
M4

P

)

+ |φ0φ−|2
(

1 +
|φ+|4
M4

P

)

+|φ0φ+|2
(

1 +
|φ−|4
M4

P

)

+
3|φ0φ+φ−|2

M2
P

− sin θξ(eiψφ+φ− + e−iψφ̄+φ̄−)

×
(

1 +
|φ0|2
M2

P

+
|φ0|2
M4

P

(|φ0|2 + |φ+|2 + |φ−|2)
)

+ (sin θξ)2

×
(

1 − |φ0|2
M2

P

+
|φ0|2
M4

P

(|φ0|2 + |φ+|2 + |φ−|2)
)}

+
g2

8
(|φ+|2 − |φ−|2 − cos θξ)2 (B.1)
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